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Optical vortex solitons in parametric wave mixing
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We analyzetwo-component spatial optical vortex solitonssupported by parametric wave mixing processes
in a nonlinear bulk medium. We study two distinct cases of such localized waves, namely, parametric vortex
solitons due to phase-matched second-harmonic generation in an optical medium with competingquadratic
and cubic nonlinear response, and vortex solitons in the presence ofthird-harmonic generationin a cubic
medium. We find, analytically and numerically, the structure of two-component vortex solitons, and also
investigate modulational instability of their plane-wave background. In particular, we predict and analyze in
detail novel typesof vortex solitons,a ‘‘halo-vortex,’’ consisting of a two-component vortex core surrounded
by a bright ring of its harmonic field, anda ‘‘ring-vortex’’ soliton which is a vortex in a harmonic field that
guides a ring-like localized mode of the fundamental-frequency field.

PACS number~s!: 42.65.Tg, 42.65.Jx, 42.65.Ky, 41.20.Jb
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I. INTRODUCTION

An optical vortex soliton appears as a stationary s
trapped beam in a self-defocusing optical medium that c
ries a phase singularity on an electromagnetic field, so
the beam intensity vanishes at a certain point, and the fi
phase changes by 2pm (m being integer! along any closed
loop around the zero-intensity point. If such an object
created in a linear bulk medium@1,2#, it preserves the singu
larity but expands due to diffraction. However, in a nonline
medium, the diffraction-induced expansion of the vort
core can be compensated for by a nonlinearity-indu
change in the refractive index of a nonlinear mediu
thereby creating a stationary self-trapped structure,an opti-
cal vortex soliton. Such nonlinear localized waves carrying
singularity were first introduced as stationary solutions of
nonlinear Schro¨dinger ~NLS! equation in the pioneering pa
per by Ginzburg and Pitaevsky@3# to describe topologica
excitations in superfluids, but the same objects appea
many other fields@4# including nonlinear optics@5#.

The parametric interactions may provide an efficient w
of vortex transformation. In particular, by mixing waves
different frequencies, one can change the vortex topolog
chargem and even the vortex polarization. Recently, the fi
experimental results on the vortex generation in the prese
of two-wave parametric mixing have been reported in n
linear optics, including the second-harmonic generat
~SHG! @6,7# and more general types of frequency convers
@8# and sum-frequency mixing@9# where the generation o
higher-order (umu.1) linear vortices in the case of negl
gible spatial walk-off between harmonics was demonstra

To the best of our knowledge, no theory of paramet
optical vortices in the presence of both diffraction and no
linearity has been developed so far. In a nonlinear regime
interplay between diffraction and parametric coupling of t
harmonic fields is expected to lead to the formation of s
tionary structures —parametric vortex solitons— supported
by three- or four-wave mixing between the phase-matc
waves of different frequencies. Stability of such multifr
PRE 611063-651X/2000/61~2!/2042~8!/$15.00
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quency vortex solitons is a key issue. For example, in
problem of SHG in a diffractive bulk medium, vortex sol
tons are expected to be unstable due to parametric mod
tional instability of the two-wave background field@10#. Re-
cently, it has been suggested@11# that taking into accounta
weak defocusing cubic nonlinearityone can eliminate the
development of parametric modulational instability allowin
stable dark solitons to exist. Some examples of stable t
wave parametric dark solitons have been presented in
@11#, and it has been pointed out that, in the problem of SH
a stable vortex soliton of the lowest possible char
(umu51) can exist describing a 2p-phase twist of the fun-
damental wave and 4p-phase twist in the second-harmon
field.

In the present paper, we suggest a general approach t
analysis ofmulticomponent vortex solitonsresulting from
parametric wave mixing. The general theory is then dev
oped in detail in the no-walkoff case fortwo examples: ~i!
parametric interaction of the first and second harmonics
medium with competing quadratic and cubic nonlineari
and ~ii ! parametric interaction between the first and th
harmonics in a medium with a cubic nonlinear response
both the cases, we find different classes of vortex soliton
(211)-dimensional dark solitons of circular symmetry ca
rying a phase singularity, and investigate their stability
propagation and modulational stability of the supporti
two-component background waves.

The paper is organized as follows. In Sec. II, we brie
present two models of parametric wave interaction that
scribe a phase-matched coupling between the fundame
frequency mode and its harmonic field, in the case of pha
matched wave mixing and no walk-off. The further analy
of the asymptotic structure of stationary localized solutio
for parametric vortex solitons is rather general, and it is p
sented in Sec. III for both the models. Section IV is devo
to the analysis of vortex solitons in the model of competi
nonlinearities. We find numerically the profiles of two
component vortex solitons and investigate their stability
propagation. In particular, we reveal the existence of clas
2042 ©2000 The American Physical Society
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of dark-soliton solutions of radial symmetry, includinga
ring-vortex soliton, that consists of a vortex core in the ha
monic field surrounded by a bright ring of its fundamen
frequency, anda halo-vortex, a two-wave vortex soliton with
nonmonotonic tails. The corresponding results are also
tained for the problem of the third-harmonic generation
Sec. V. Finally, Sec. VI gives the summary of our results a
briefly discusses some related issues including the comm
on experimental verifications and a link with other problem

II. MODELS OF TWO-WAVE
PARAMETRIC INTERACTION

A. Competing nonlinearities

First, we consider the model of competing quadratic a
cubic nonlinearities introduced earlier for th
(111)-dimensional case in Ref.@12# and recently general
ized to the case of (211)-dimensional bright solitons o
radial symmetry in a bulk medium@13#. We assume that a
beam of a fundamental harmonic~FH! with the frequencyv
is launched into a medium possessing combined quad
~or x (2)) and cubic~or x (3)) nonlinear response under th
condition of phase-matched SHG. The FH beam generat
second harmonic~SH! wave, and such a two-wave mixin
process in a bulk medium is described by a system of
coupled nonlinear equations,

2ik1

]E1

]z
1¹'

2 E11
8pv2

c2
x (2)E2E1* e2 iDkz

1
12pv2

c2
x (3)~ uE1u21ruE2u2!E150,

~1!

4ik1

]E2

]z
1¹'

2 E21
16pv2

c2
x (2)E1

2eiDkz

1
48pv2

c2
x (3)~ uE2u21ruE1u2!E250,

whereE1 andE2 are the complex amplitude envelopes of F
(v15v) and SH (v252v) waves, respectively;k15k(v)
and k25k(2v) are the corresponding wave numbers;Dk
[(2k12k2) is the wave-vector mismatch between the h
monics, r ~which we take r52) is the cross-phase
modulation coefficient, and the coefficientsx (2) andx (3) are
proportional to the second- and third-order susceptibility t
sor elements and they characterize the combined nonli
response of an optical medium.

Adopting a similar set of scaling transformations as
Ref. @13#, we measure the transverse coordinates in the u
of the beam radiusR0, and the propagation coordinate, in th
units of the beam diffraction lengthRd52k1R0

2. Then, ap-
plying the transformations

E15bc2~16pv2x (2)R0
2!21eibzu~x,y,z!,

E25bc2~8pv2x (2)R0
2!21ei [(2b1D)z]w~x,y,z!,
l
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where the parameterb stands for the nonlinearity-induce
change of the beam propagation constant andD
52k1Rd

2Dk, we obtain a system of normalized equations
u andw,

i
]u

]z
1s¹'

2 u2u1wu* 1xS uuu2

2s
1ruwu2Du50,

~2!

is
]w

]z
1s¹'

2 w2aw1
u2

2
1x~2suwu21ruuu2!w50,

wherea5(2b1D)s/b,s[signb, and the coordinates ar
rescaled as followsz→z/b and (x,y)→(x,y)/Aubu. For the
spatial beam propagation we takes52. Parameterx de-
scribes a competition between quadratic and cubic non
earities, and it is defined as

x5b
3c2

16pv1
2R0

2

x (3)

@x (2)#2
. ~3!

Stationary solutions are then described by Eq.~2! with the
z-derivatives omitted. To look for radially symmetric solu
tions carrying a phase singularity, we use the polar coo
natesr 5Ax21y2,f5tan21(x/y), and make the following
substitutions,

u~r ,f!5U~r !eimf, w~r ,f!5W~r !eiNmf, ~4!

whereU(r ) andW(r ) are real functions and, for parametr
interaction between the fundamental and second harmon
N52 whereasm is an integer number that characterizes t
vortex charge.

Substituting Eq.~4! into Eq. ~2!, we obtain

d2U

dr2
1

1

r

dU

dr
2

m2U2

r 2
1s

]F

]U
50,

~5!
d2W

dr2
1

1

r

dW

dr
2

m2N2W2

r 2
1s

]F

]W
50,

where the functionF has the meaning of an effective pote
tial, and it is defined as

F5F1~U,W!52
1

2
U21

1

2
U2W2

a

2
W2

1xS 1

16
U41W41

1

2
rW2U2D . ~6!

B. Third-harmonic generation

A similar type of two-wave parametric interaction occu
under the condition of the third-harmonic generation. Brig
and dark solitary waves in a waveguide geometry~i.e., with
one transverse dimension! have been analyzed in Ref.@14#.
In this case, the parametric interaction occurs between
fundamental beam (v15v) and its third harmonic (v3
53v), and the corresponding physical model of the pa
metric wave mixing in a bulk can be described by a syst
of two coupled equations,
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2ik1

]E1

]z
1s¹2E12x@~ uE1u212uE3u2!E11E1*

2E3e2 iDkz#

50,
~7!

2ik3

]E3

]z
1s¹2E329xF ~ uE3u212uE1u2!E31

1

3
E1

3E3eiDkzG
50,

where E1 and E3 are the slowly varying envelopes of th
first and third harmonic fields, respectively, with correspon
ing wave numbersk15k(v) and k35k(3v);Dk53k12k3
is the wave-vector mismatch between the harmonics anx
5(3pv2/c2)ux (3)u is the nonlinearity parameter, which
assumed here to be always positive, whereasx (3),0.

We follow a normalization procedure similar to that us
above for the competing nonlinearity model. Again, t
transverse coordinate is measured in units of the beam w
R0 and the propagation coordinate, in units of the diffracti
lengthRd52k1R0

2. Using the transformations of Ref.@14#

E15~Ab/3Ak1R0
2x!eibzu~x,y,z!,

~8!
E25~Ab/Ak1R0

2x!ei (3b1D)zw~x,y,z!,

the physical Eq.~7! can be written in the following normal
ized form @cf. Eq. ~2!#,

i
]u

]z
1s¹2u2u2

s

3
u* 2w2sS uuu2

9
12uwu2Du50,

~9!

is
]w

]z
1s¹2w2aw2

s

9
u32s~9uwu212uuu2!w50,

whereu andw are the normalized amplitudes of the fund
mental harmonic field and its third harmonic,a5s(3b
1D)/b,D52k1R0

2Dk,s[sgnb, the transverse and propag
tion coordinates have been rescaled in terms of
nonlinearity-induced change of the propagation cons
b,z→z/b and (x,y)→(x,y)/Aubu, and, for spatial solitons
we takes53. Importantly, everywhere below we consid
only defocusing cubic nonlinearitysearching for vortex-type
solitary waves on a modulationally stable nonvanish
background.

Stationary radially symmetric localized solutions of E
~9! have the form~4! with N53, and they satisfy Eq.~5!
with the potentialF, this time defined as

F5F2~U,W!52
1

2
U22

a

2
W22s

3S 1

9
U3W1

1

36
U41

9

4
W41W2U2D . ~10!

Thus, in both the cases, stationary vortex-like structu
are described by the same system of Eq.~5! with different
types of the potentialF. This observation allows us to pe
form further analytical calculations in a rather general for
and, therefore, most of them are universal and can be app
to other models.
-

th

e
nt

g
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,
ed

III. GENERAL THEORY OF PARAMETRIC
VORTEX SOLITONS

A. Stationary solutions

Stationary radially symmetric solutions of Eq.~2! @Eq.
~9!# are given by Eq.~5! with the potential functionF de-
fined in Eq.~6! @Eq. ~10!# andN52@N53#. It is important
to note that the parametric coupling between the mo
bringsseveral featuresin the vortex structure and propertie
Indeed, as follows from Eqs.~4! and ~5!, a vortex with the
chargem in the fundamental mode is always coupled to
vortex of the chargeNm(N52,3) in the harmonic compo
nent. This makes parametric vortices very different from
types of vortex solitons analyzed earlier in the systems
two incoherently coupled NLS equations~see, e.g., Ref.@15#
and references therein!.

B. Analysis of vortex asymptotics

We are interested in the localized solutions supported b
two-component finite-amplitude background wave. Forr
→`, the background amplitudes (U0 ,W0) satisfy the
coupled algebraic equations:

]F

]U
50,

]F

]W
50, ~11!

which may have one or more nontrivial solutions. Impo
tantly, due to the self-action effect we always have a spe
solution of the form (0,W0), that corresponds to an excite
harmonic field only.

A vortex soliton is a localized nonlinear mode that a
ymptotically approaches the background (U0 ,W0) for r
→`, but its intensity vanishes forr→0 to keep the terms
;(m2/r 2)U and ;(m2N2/r 2)W in Eq. ~5! finite. This im-
plies that we can find the vortex asymptotics in a rather g
eral form. Forr→0, we look for solutions of Eq.~5! in the
form:

U5U02
A

r 2
2

A2

r 4
1•••,

~12!

W5W02
B

r 2
2

B2

r 4
1•••,

where (U0 ,W0) is a solution of Eq.~11! for the background
amplitudes. Keeping in Eq.~5! only the asymptotic terms up
to the order of;1/r 2, we obtain,

sm2U01S ]2F

]U2D
0

A1S ]2F

]U]WD
0

B50,

~13!

sN2m2W01S ]2F

]W2D
0

B1S ]2F

]W]U D
0

A50,

where the index 0 stands for the values calculated aU
5U0 andW5W0. Solutions of the linear Eq.~13! for A and
B can be easily found analytically; they define the asymp
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ics of the vortex solitons for different values of the vort
chargem in terms of the background amplitudesU0 andW0
defined by Eqs.~11!.

The analysis of the asymptotics gives us important inf
mation about the vortex structure. If both the productsAU0
and BW0 are positive@see Eq.~12!#, the vortex has a stan
dard profile with the intensity in the core growing monoton
cally and always lower than the background intensity. Ho
ever, if one of these products is negative, somewhere ac
the vortex the intensity becomes higher than the asympt
background intensity. That implies that the vortex core
surrounded by a bright ring of higher intensity. We call su
structures ‘‘halo-vortices.’’ In both the cases mentione
above, such vortex solitons may exist on a modulationa
stable background, and some examples are given belo
Secs. IV and V.

C. Vortex soliton as a waveguide

The concept of light guiding light~see e.g., Ref.@16# and
references therein! is based on a simple observation that
spatial optical soliton~e.g., vortex! creates an effective opti
cal waveguide in a nonlinear medium that can guide a w
of different frequency or polarization. It is clear that a vort
soliton creates a waveguide of radial symmetry, which c
guide a fundamental mode~no nodes! of the other wave. For
the case of two incoherently coupled NLS equations desc
ing two orthogonal polarizations, the guiding properties
vortex solitons have been analyzed by Haelterman and S
pard @15#. The first demonstration of an optically writte
waveguide based on an optical vortex has been recently
ported by Truscottet al. @17#. However, the theory devel
oped in Ref.@15# is not valid for the case of the resona
interactions and parametrically coupled waves. Indeed,
parametric interaction forces the harmonic field to vanish
r→0, trapping a singularityof the order ofNm. Therefore,
a parametric vortexcannot guide a fundamental mode. To
analyze the guiding properties of parametric vortex solito
we note that Eqs.~11! with the potentialF defined by Eqs.
~6! and ~10! have the solution (U050,W0Þ0). Therefore,
we consider a vortex soliton created by a harmonic fieldW,
with a stationary profile described by the nonlinear equati

d2W

dr2
1

1

r

dW

dr
2S N2m2

r 2
1sa D W2gW350,

whereg524sx, for the model~2!, andg59, for the model
~9!. This equation always has a solution in the form of
vortex soliton with the chargeNm provided g.0 and sa
,0. Now, an eigenvalue equation for a linear mode guid
by the vortexW(r ) follows from the first equation of the
system~5!. AssumingU!max(W), we obtain,

d2U

dr2
1

1

r

dU

dr
2Fm2

r 2
1s2sG~r !GU50, ~14!

where

G~r !5S d2F

dU2D U
U50

.
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Equation ~14! is a standard eigenvalue problem of th
linear waveguide theory, and it can be studied analytica
e.g., by means of variational methods~see, e.g., Ref.@18#
and references therein!. To make some analytical estimate
we presentG(r ) in an approximate form and obtain

d2U

dr2
1

1

r

dU

dr
2

m2

r 2
U2EU1

C2

~D21r 2!
U50,

whereE,C, andD are, in general, functions ofa andg. The
parameters are chosen to provide the best approximatio
the effective potentialG(r ). Using the standard variationa
method ~or Ritz optimization approach! and looking for a
bifurcation of a linear mode taken in a trial form,f (r )
5r exp(2kr), we obtain an implicit expression to determin
the mode cutoffa,

E5~2C22122m2!3/~36C4D2!,

which we analyze below for some particular cases.

D. Modulational instability

Stability of the stationary vortex solitons described by t
system ~5! is an important issue. In general, the stabil
analysis of vortices in nonlinear models is a complica
and, generally speaking, unsolved problem. Instability c
develop due to the presence of unstable eigenmodes lo
ized near the vortex core and, in the one-dimensional c
this type of instability ofdark solitonsleads to the soliton
motion, i.e., it isa drift instability ~see, e.g., Ref.@5# and
references therein!. Since moving vortices with nonzer
minimum intensity~similar to grey solitons! do not exist,
similar drift instability is not observed for vortices. The ma
instability that is usually associated with a vortex solit
originates from the instability of the nonlocalized bac
ground field.

The analysis of modulational instability of the bac
ground field can be carried out in a general form. First,
write Eqs.~2! and ~9! in the form

i
du

dz
1s¹2u1

]F
]u*

50,

~15!

is
dw

dz
1s¹2w1

]F
]w*

50,

with F defined as

F→F152uuu21
1

2
~u2w* 1u* 2w!2auwu2

1xS 1

8
uuu412uwu41ruwu2uuu2D , ~16!

for the model of competing nonlinearities, or
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F→F252uuu21
s

9
~u3w* 1u* 3w!2auwu2

1sS 1

18
uuu41

9

2
uwu412uwu2uuu2D , ~17!

for the model of the third-harmonic generation. We look f
stability of the background wave solution (U0 ,W0) defined
by Eq. ~11!, and linearize Eq.~15! around this stationary
solution substituting

u5U01aeik¢•r¢1 ivz1be2 ik¢•r¢2 ivz,
~18!

w5W01ceik¢•r¢1 ivz1de2 ik¢•r¢2 ivz.

As a result, we obtain a system of linear equations
a,b* ,c, andd* leading to the characteristic equation

UAu* ,u2V Au* ,u* Au* ,w Au* ,w*

Au,u Au,u* 1V Au,w Au,w*

Aw* ,u Aw* ,u* Aw* ,w2V Aw* ,w*

Aw,u Aw,u* Aw,w Aw,w* 1V

U50.

Here the nondiagonal elements are given byAn,m
[(]2F/]n ]m)uu5U0,w5W0

where n,m5u,u* ,w,w* ,

and in the diagonal matrix elements An,n*
[(]2F/]n ]n* )uu5U0,w5W02ukW u2. Solving the characteristic

equation with respect toV, we conclude the modulationa
instability analysis: purely realV solutions for all positive
uk¢ u2 ~with other parameters fixed! indicate a modulationally
stable background for this fixed set of the parameters. Be
we present the results of the modulational instability analy
for two cases of the parametric two-wave interaction.

IV. COMPETING NONLINEARITIES

Analysis of modulational instability for the system~2! has
been briefly presented in Ref.@11#. Below we repeat the
main steps of that analysis for the completeness of this pa
Solutions of Eq.~2! for background waves can be found b
solving the coupled algebraic equations:

12xW0
3112W0

21W0~a2812x21!52x21,

U0
254~12W0!x2128W0

2 ,

for real U0 and W0. There exist up tothree such solutions
with both amplitudesU0 andW0 being nonzero. Performing

FIG. 1. Existence domains for the modulationally stable ba
ground modes of the system~2! for ~a! s521 and x.0; ~b! s
511 andx,0.
r

r

,
is

er.

the analysis of modulational instability for each of the thr
solutions ats561, we find that there exists onlyone modu-
lationally stablemode. The parameter domains where suc
solution exists are presented in Figs. 1~a! and 1~b!. Note, that
sign(sx)5signx (3) and thus modulationally stable solution
exist only for x (3),0. Importantly, the amplitude of the
modulationally stable background diverge in the limitx
→0 so that the stable background solution exists exclusiv
due tomutual action of quadratic and cubic nonlinearitie.
Other nonlinear modes are modulationally unstable in
whole domain of their existence and they are not presen
in Figs. 1~a! and 1~b!. Modulational stability in the limit of
large negativex (3) @e.g., fors521 andx.0, see Fig. 1~a!#,
is not surprising because stable dark solitons are know
exist in a defocusing Kerr medium without quadratic nonl
earity. Here, we are interested in the case when the effec
nonlinearity is predominantly quadratic, i.e.,uxU0u;uxW0u
!1. We found that this condition can only be satisfied f
s511 where modulationally stable background waves
moderate amplitudes exist for relatively small values
negativex @see Fig. 1~b!#.

Using the numerical relaxation technique, we have fou
that a continuous family of two-component vortex solito
exists in the whole region of the existence of modulationa
stable background waves shown in Figs. 1~a, b!. Figures 2~a!
and 2~b! present an example of such a vortex soliton.

Analysis of the vortex asymptotics demonstrates t
halo-vortices can exist in Eq.~2! only if s521 andx.0, in
the narrow domain shown in Fig. 3. Both terms withB and
B2 factors in the asymptotic expansion~12! contribute to the
formation of the halo~i.e., bothBW0 andB2W0 products are
negative!.

-

FIG. 2. An example of a two-component vortex soliton su
ported by competing nonlinearity (a522.5, x520.1, and s
511). In ~a! only the vortex of the fundamental harmonic field
shown.

FIG. 3. Region of the existence of halo-vortices in the model
competing nonlinearities,s521.
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Ring-vortex solitonscan also exist in the model~2!, see
Figs. 4~a! and 4~b! and Figs. 5~a! and 5~b!. Variational analy-
sis allows us to find an approximate expression for the bi
cation curve where such solutions appear, (22a)5Aa/x.
As a increases, the maximum of the bright-ring amplitu
approaches the valueU0 of two-wave modulationally stable
parametric plane waves. At the values ofr where U ap-
proachesU0, the second component,W, also approaches th
corresponding plane wave amplitudeW0 @see Fig. 4~b!#.

Such ring-vortex solitons can be unstable due to mod
tional instability of the background waveU050,W0

2

5a/4x. For example, fors521,a.0, modulational stabil-
ity is defined by the condition (a22).Aa/x. The regions
of the existence of modulationally stable one-compon
plane waves and ring-vortex solitons of Eq.~2! are presented
in Fig. 6.

Existence of two-component stable vortex solitons co
posed of parametrically coupled fields suggests that s
vortices can be excited in the process of the harmonic g
eration. In Fig. 7, we present the numerical simulation res
supporting this idea. We launch a mode of the fundame
frequency without a seeded second harmonic assuming
condition of phase-matching. The vortex soliton dynamics
simulated using a split-step beam propagation met
~BPM!. To solve the problem of the vortex phase geome
we simulate a system of four vortices, arranged such
horizontally and vertically adjacent vortices are opposite
charge. Lines of equal phase are chosen to correspond t
lines of the force of an equivalent system of electrosta
point charges. With the periodic boundary conditions i
posed by BPM, this configuration means that, in fact,
infinite array of vortices is simulated. Figure 7 shows t
vortex generation by an input fundamental mode with sing

FIG. 4. Examples of a ring-vortex soliton (s521, x51) for
~a! a51.4 and~b! a53. Solid, FH wave; dashed, SH wave.

FIG. 5. ~a! Intensity profile of the first harmonic, and~b! the
amplitude profile of a ring-vortex soliton (a51.7, x51, and s
521) for the fundamental~solid! and second-harmonic~dashed!
modes.
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charged vortices. Due to phase matching with the sec
harmonic, we observe a generation of double-charge vort
in the harmonic field~see the plots atz51) and then peri-
odic oscillations of the two-component background and
vortex profiles near a stationary state corresponding to a
tice of two-component vortex solitons~see the plots atz
510 as an example of such dynamics!.

V. THIRD-HARMONIC GENERATION

Vortex solitons of Eq.~9! have fewer parameters in com
parison with the parametric vortices described by Eq.~2!,
and thus they can be analyzed much more easily num
cally. These vortex solitons are found in the whole region
the existence of modulationally stable plane waves, i.e.,
a,a th'14.509. Examples of such vortex solitons a
shown in Figs. 8~a! and 8~b!.

A third-harmonic component of the vortex solitons has
nonmonotonic tail for 10.85,a,14.509, however it can
only be called a halo vortex for the interval 11.26,a
,14.509, where the absolute value of a local extremum
the structure of the vortex tail is greater than the correspo
ing plane wave background valueW0. The halo is becoming
more pronounced asa→14.509. An example of a halo
vortex soliton of Eq.~9! is shown in Fig. 9.

Ring-vortex solitons have also been found for the mo
~9!, see Fig. 10. In this case, a variational analysis allows
to find an approximate analytical result for the bifurcati

FIG. 6. Region of existence for ring-vortex solitons ats521
andx.0. Left curve, (22a)5Aa/x, is defined by a bifurcation
where a bright component appears. Middle curve is a critical thre
old that divides modulationally stable and unstable solutions. Rig
hand side curve is the boundary for the existence of two-compo
parametric plane waves.

FIG. 7. Generation of two-component parametric vortex solito
by the fundamental vortices. Profiles of the fundamental~upper
row! and second-harmonic~lower row! fields are shown atz51
~left column! andz510 ~right column!.
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point (s521) where a ring-like mode is guided by the vo
tex

abif5
~g/r!

H 12
2

9 F12
g

2rN2m2
~112m2!G 3J .

For g59,r52, N53, and m51 this gives abif'4.52,
which agrees well with numerical data. We also find that,
general, coupled ring-vortex solitons exist fora.4.5, and
for each such value ofa ~excepta5abif) there existtwo
different types of ring-vortex solitons~see Fig. 10!. As the
parametera decreases, the maximum of the bright ring in t
fundamental mode approaches the value ofU0 of the two-
wave modulationally stable background field. Again, as
has been observed for the model of competing nonlineari
at values ofr whereU approachesU0, the vortex componen
W deforms significantly approaching the correspond
plane-wave amplitudeW0. We note thatall these ring-vortex
solitons are modulationally stable, because, in the frame
work of Eq. ~9!, modulational instability does not occur fo
one-component plane wave solutions.

VI. CONCLUDING REMARKS

We have analyzed two-component vortex solitons s
ported by parametric wave mixing in a nonlinear optical m
dium. We have considered two classes of such vortex s
tons. In the first case, we have studied the existen
structure, and stability of vortex solitons supported by pha
matched interaction between the fundamental and sec
harmonic waves in a quadratic medium, and the effect of
next-order cubic nonlinearity has been taken into account
suppressing modulational instability of the supporting pla

FIG. 8. Examples of two-component vortex solitons suppor
by the third-harmonic generation ats521: ~a! a59, and ~b! a
513.

FIG. 9. Example of a halo-vortex soliton as a stationary solut
of Eq. ~9! for s521 anda513.
t
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li-
e,
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wave background. In the second case, we have consid
how the vortex parameters, structure, and stability are m
fied due to the process of third-harmonic generation wh
the phase-matched wave interaction generates a corresp
ing multicharge vortex component in a harmonic field.
particular, we have predicted the so-called ‘‘halo-vorte
consisting of a two-wave vortex core surrounded by a bri
ring on a nonvanishing background. Additionally, we ha
analyzed the waveguiding properties of a vortex soliton
the case when it guides a harmonic field due to a pha
matched parametric interaction. A rigorous analysis of
stability of these parametric vortex solitons is still an op
problem, as well as the effect of walk-off on the vortex e
istence and stability.

As for experimental verifications of the vortex soliton
described above, we would like to mention that, at leas
the low-intensity regime, parametric vortices have alrea
been observed in nonlinear optics. A possibility of SHG by
beam with a vortex was first mentioned and experimenta
verified in Ref.@6#, where a vortex of the topological charg
m52 was found in the second-harmonic wave when the f
damental wave contained a vortex of the topological cha
m51. The similar results on SHG have been presented
Dholakia et al. in Ref. @7#, whereas more complicated pro
cesses of sum-frequency mixing with beams carrying ph
singularities were reported by Berzˇanskiset al. @8,9#. It is
worth noticing that in all of those observations the differe
harmonics experienced noticeable walk-off that makes
stationary structures difficult to observe, also introduci
novel features in the vortex dynamics. In particular, for

d

n

FIG. 10. A family of ring-vortex solitons shown in the middl
plot as the maximum of the bright-ring amplitudeumax vs as. Filled
circlesA, B andC, D correspond to the vortex profiles shown abo
and below, respectively.
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collinear type I phase-matched SHG with an input beam c
rying a single-charge vortex, Matijosˇius et al. @19# observed
two intensity zeroes in the second-harmonic field with
separation of two SHG vortices due to walk-off. Thus, w
can expect that stationary two-component vortex solit
discussed above can be observed in typical upconversion
periments when a high-intensity beam undergoes freque
doubling simultaneously with the creation of a phase sin
larity produced by a phase mask at the input, similar to
experiments mentioned above which were performed
moderate powers.Stability of those vortex solitons require
small ~or zero! walk-off and a small defocusing Kerr nonlin
earity of an optical material at both~or at least fundamenta
wave! frequencies.

Additionally, we would like to mention that the para
metrically coupled equations of competing nonlineariti
similar to Eq.~2! analyzed above, have been recently int
duced by Heinzenet al. @20# to describe the dynamics o
coupled atomic and molecular Bose-Einstein condensa,
leading to a kind of ‘‘superchemistry’’ in which the forma
tion of molecules is a controlled parametric quantum p
cess. In spite of the fact that both atomic and molecu
condensates should be considered in a trapping externa
tential @21#, many of the features of the coupled stationa
states, including all the types of the vortex states introdu
above, are expected to exist in the model of atom-molec
-
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e
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-
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condensates as well, providing a much broader view of
phenomenology of parametric vortex solitons.

At last, we expect that the concept of the two-compon
parametric vortices, generated and supported by the th
harmonic generation process, can be important in the
calledthird-harmonic microscopy~see, e.g., Ref.@22#! where
an image is rendered using a series of cross-sectional im
produced by third-harmonic generation within the specim
Vortices can then be formed due to the development of ca
tics @2# in the reflected harmonic field, indicating the regio
of highly concentrated inhomogeneities. This technique
based on the fact that the nonlinear susceptibility of so
media vary over many orders of magnitude, compared w
linear refractive index changes that vary in a relatively sm
range.
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