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Optical vortex solitons in parametric wave mixing
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We analyzetwo-component spatial optical vortex solitosispported by parametric wave mixing processes
in a nonlinear bulk medium. We study two distinct cases of such localized waves, namely, parametric vortex
solitons due to phase-matched second-harmonic generation in an optical medium with compatiragic
and cubic nonlinear response, and vortex solitons in the presendei@i-harmonic generatiorin a cubic
medium. We find, analytically and numerically, the structure of two-component vortex solitons, and also
investigate modulational instability of their plane-wave background. In particular, we predict and analyze in
detail novel typeof vortex solitonsa “halo-vortex,” consisting of a two-component vortex core surrounded
by a bright ring of its harmonic field, anal “ring-vortex” soliton which is a vortex in a harmonic field that
guides a ring-like localized mode of the fundamental-frequency field.

PACS numbes): 42.65.Tg, 42.65.Jx, 42.65.Ky, 41.20.Jb

[. INTRODUCTION guency vortex solitons is a key issue. For example, in the
problem of SHG in a diffractive bulk medium, vortex soli-

An optical vortex soliton appears as a stationary selftons are expected to be unstable due to parametric modula-
trapped beam in a self-defocusing optical medium that cartional instability of the two-wave background fidl#i0]. Re-
ries a phase singularity on an electromagnetic field, so thatently, it has been suggestgtl] that taking into accoura
the beam intensity vanishes at a certain point, and the fieldieak defocusing cubic nonlinearigne can eliminate the
phase changes byzn (m being integeralong any closed development of parametric modulational instability allowing
loop around the zero-intensity point. If such an object isstable dark solitons to exist. Some examples of stable two-
created in a linear bulk mediupd,2], it preserves the singu- wave parametric dark solitons have been presented in Ref.
larity but expands due to diffraction. However, in a nonlinear{11], and it has been pointed out that, in the problem of SHG,
medium, the diffraction-induced expansion of the vortexa stable vortex soliton of the lowest possible charge
core can be compensated for by a nonlinearity-induced|m|=1) can exist describing a2phase twist of the fun-
change in the refractive index of a nonlinear medium,damental wave and#-phase twist in the second-harmonic
thereby creating a stationary self-trapped structareppti-  field.
cal vortex soliton Such nonlinear localized waves carrying a  In the present paper, we suggest a general approach to the
singularity were first introduced as stationary solutions of theanalysis of multicomponent vortex solitonesulting from
nonlinear Schrdinger (NLS) equation in the pioneering pa- parametric wave mixing. The general theory is then devel-
per by Ginzburg and PitaevsKB] to describe topological oped in detail in the no-walkoff case ftwo examples(i)
excitations in superfluids, but the same objects appear iparametric interaction of the first and second harmonics in a
many other field$4] including nonlinear optic$5]. medium with competing quadratic and cubic nonlinearity,

The parametric interactions may provide an efficient wayand (ii) parametric interaction between the first and third
of vortex transformation. In particular, by mixing waves of harmonics in a medium with a cubic nonlinear response. In
different frequencies, one can change the vortex topologicaddoth the cases, we find different classes of vortex solitons as
chargem and even the vortex polarization. Recently, the first(2+ 1)-dimensional dark solitons of circular symmetry car-
experimental results on the vortex generation in the presenaging a phase singularity, and investigate their stability to
of two-wave parametric mixing have been reported in nonpropagation and modulational stability of the supporting
linear optics, including the second-harmonic generatiortwo-component background waves.
(SHQ [6,7] and more general types of frequency conversion The paper is organized as follows. In Sec. I, we briefly
[8] and sum-frequency mixinf9] where the generation of present two models of parametric wave interaction that de-
higher-order [m|>1) linear vortices in the case of negli- scribe a phase-matched coupling between the fundamental
gible spatial walk-off between harmonics was demonstratedrequency mode and its harmonic field, in the case of phase-

To the best of our knowledge, no theory of parametricmatched wave mixing and no walk-off. The further analysis
optical vortices in the presence of both diffraction and non-of the asymptotic structure of stationary localized solutions
linearity has been developed so far. In a nonlinear regime, afor parametric vortex solitons is rather general, and it is pre-
interplay between diffraction and parametric coupling of thesented in Sec. Ill for both the models. Section IV is devoted
harmonic fields is expected to lead to the formation of stato the analysis of vortex solitons in the model of competing
tionary structures —parametric vortex solitons— supported  nonlinearities. We find numerically the profiles of two-
by three- or four-wave mixing between the phase-matchedomponent vortex solitons and investigate their stability to
waves of different frequencies. Stability of such multifre- propagation. In particular, we reveal the existence of classes
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of dark-soliton solutions of radial symmetry, includirey  where the paramete8 stands for the nonlinearity-induced
ring-vortex soliton that consists of a vortex core in the har- change of the beam propagation constant add
monic field surrounded by a bright ring of its fundamental =2|<1R§Ak, we obtain a system of normalized equations for
frequency, ané halo-vortex a two-wave vortex soliton with  y andw,

nonmonotonic tails. The corresponding results are also ob-

tained for the problem of the third-harmonic generation in . du 2 " lu] o)

Sec. V. Finally, Sec. VI gives the summary of our results and - FsViu—u+twu™+y| 5 - +p|w|®Ju=0,

briefly discusses some related issues including the comments )

on experimental verifications and a link with other problems. IW 2

u
io-E+SVfW—aW+ ?+X(20'|W|2+ plul®w=0,

2

Il. MODELS OF TWO-WAVE . .

rescaled as followg—z/8 and ,y)— (x,y)/\|B]. For the
A. Competing nonlinearities spatial beam propagation we take=2. Parametery de-
First, we consider the model of competing quadratic anccribes a competition between quadratic and cubic nonlin-
cubic  nonlinearites  introduced earlier for the earities, and it is defined as
(1+1)-dimensional case in Reff12] and recently general-
ized to the case of (21)-dimensional bright solitons of _ 3c? x®
radial symmetry in a bulk mediufi.3]. We assume that a X_'Blﬁ,n-szz [x@12
beam of a fundamental harmor(ieH) with the frequencyw v
is launched into a medium possessing combined quadratic Stationary solutions are then described by @ywith the
(or x'?) and cubic(or x®) nonlinear response under the zderivatives omitted. To look for radially symmetric solu-
condition of phase-matched SHG. The FH beam generatestins carrying a phase singularity, we use the polar coordi-

second harmoniCSH) wave, and such a two-wave miXing natesr:,/X2+y2’¢:tan_l(xly), and make the fo”owing
process in a bulk medium is described by a system of twgypstitutions,

coupled nonlinear equations,

()

u(r,@)=U(r)e™, wir,¢)=W(r)eNm (4

. JE, ) 8mw? Ak
2iky——+ViE1+ — xPE Efe 14k whereU(r) andW(r) are real functions and, for parametric
interaction between the fundamental and second harmonics,
1277 @2 N=2 whereasnis an integer number that characterizes the
+———x®U|E|*+ p|Ex[)E1=0, vortex charge.
c Substituting Eq(4) into Eq.(2), we obtain
(1)
dU 1du m?u? oF

JE 167 w? . bl ek el

4ik1 2+Vi >+ X(Z)EEEIAKZ er + r dr r2 +S(7U 0,
)
487 w? B)le (2 ) d’W  1dw m’N*W?  OF
+ X (B2 "+ p[E4|H)E,=0, 9 rar 2 Saw O

where the functiorF has the meaning of an effective poten-

whereE; andE, are the complex amplitude envelopes of FH tial, and it is defined as

(w1=w) and SH @,=2w) waves, respectivelyk;=k(w)
and k,=k(2w) are the corresponding wave numbensk 1 1 a
=(2k,—k,) is the wave-vector mismatch between the har- F=F,(UW)=— §U2+§U2W— EWZ
monics, p (which we take p=2) is the cross-phase-
modulation coefficient, and the coefficient&) and x*) are 1
proportional to the second- and third-order susceptibility ten- +x 1—6U4+W4+§PW2U2 : (6)
sor elements and they characterize the combined nonlinear
response of an optical medium.

Adopting a similar set of scaling transformations as in B. Third-harmonic generation
Ref.[13], we measure the transverse coordinates in the units A similar type of two-wave parametric interaction occurs
of the beam radiuRy, and the propagation coordinate, in the ynder the condition of the third-harmonic generation. Bright
units of the beam diffraction lengtRy=2k;R3. Then, ap- and dark solitary waves in a waveguide geométs., with

plying the transformations one transverse dimensiphave been analyzed in Réfl4].
In this case, the parametric interaction occurs between the
E,=Bc?(16mw’x@R2) ~te'Puu(x,y,2), fundamental beam of;=w) and its third harmonic ¢3

=3w), and the corresponding physical model of the para-
5 2 (Dp— L2684+ 4)7] metric wave mixing in a bulk can be described by a system
E,=pc(8mwx'“Ry) e w(X,y,2), of two coupled equations,
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9E; . Ill. GENERAL THEORY OF PARAMETRIC
2k, ——+ SV2E;— x[(|E1|?+2|E5|P)E, + EX 2Eqe14K7 VORTEX SOLITONS
_0 A. Stationary solutions
' @ Stationary radially symmetric solutions of E(R) [Eq.

3E 1 (9)] are given by Eq(5) with the potential functiorF de-
2ik3—3+sV2E3—9X (|Es|?+2|E4|?) Eg+ = E3E e/ 2K2 fined in Eq.(6) [Eq. (10)] an_dN=2[|\_|=3]. It is important

Jz 3 to note that the parametric coupling between the modes
bringsseveral features the vortex structure and properties.
Indeed, as follows from Eq44) and (5), a vortex with the

where E, and E; are the slowly varying envelopes of the chargem in the fundamental mode is always coupled to a

first and third harmonic fields, respectively, with correspond-vortex of the chargm(N=2,3) in the harmonic compo-
ing wave numberd,=k(w) and ks=k(3w): Ak=23k,— ks nent. This makes parametric vortices very different from all

is the wave-vector mismatch between the harmonics and YPes Of vortex solitons analyzed earlier in the systems of
=(37m2/cz)|x(3)| is the nonlinearity parameter, which is two incoherently coupled NLS equatiofsee, e.g., Refl15]
assumed here to be always positive, whengds<0. and references thergin

We follow a normalization procedure similar to that used
above for the competing nonlinearity model. Again, the B. Analysis of vortex asymptotics
transverse coordinate is measured in units of the beam width \We are interested in the localized solutions supported by a
Ro and the propagation coordinate, in units of the diffraCtiOﬂtwo-Component finite-amp"tude background wave. FKor
length Ry=2k,R3. Using the transformations of RefL4] —oo, the background amplitudesUg,W,) satisfy the

_ coupled algebraic equations:
E,=(VB/3vVkR2x)e'Pu(x,y,2),

=0,

(8) JF JF

Eyx=(VBI\kR3x) €GP M2w(x,y,2), -0 WO (1)
the physical Eq(7) can be written in the following normal-  \hich may have one or more nontrivial solutions. Impor-
ized form[cf. Eq.(2)], tantly, due to the self-action effect we always have a special
au S e solution of the form (0),), that corresponds to an excited
i—+sV2u—u——u*2W—s(—+2|W|2)u=0, harmonic field only. _ _
0z 3 9 A vortex soliton is a localized nonlinear mode that as-
5 (99  ymptotically approaches the backgrountdo(W,) for r
. oW S but its intensity vanishes far—0 to keep the terms
— +SV2W—aw— ~u3— 24 2lul)w= % Y : reep e 1€
105 TSV wW—aw=gu S(9Iw|*+2[ulHw=0, ~(mM?/r?)U and ~(m?N?/r?)W in Eq. (5) finite. This im-

_ ) plies that we can find the vortex asymptotics in a rather gen-
whereu andw are the normalized amplitudes of the funda- eral form. Forr—0, we look for solutions of Eq(5) in the

mental harmonic field and its third harmoniez=0(38  form:
+A)/,8,A=2klR§Ak,szsgn,8, the transverse and propaga-
tion coordinates have been rescaled in terms of the A A,
nonlinearity-induced change of the propagation constant U=Uyg————+
B,z—1zIB and ,y)—(x,y)/|B|, and, for spatial solitons, r
we takeo=3. Importantly, everywhere below we consider (12)
only defocusing cubic nonlinearityearching for vortex-type B B,
solitary waves on a modulationally stable nonvanishing W=W0——2——4+--~,
background. r-.r

Stationary radially symmetric localized solutions of Eq. . )
(9) have the form(4) with N=3, and they satisfy Eq(5) where U,,W,) is a solution of Eq(11) for the background

with the potentialF, this time defined as amplitudes. Keeping in Eq5) only the asymptotic terms up
to the order of~ 1/r?, we obtain,

1, a
F=F,(UW)=— U~ 2wW?-s

2- 2 9*F 9*F
+| —| A+ =
. ) . smfU, (auz 0A (auaw)oB 0,
113 114 WA 2112
X 9U W+36U + 4W +W-U“|. (10 (13)
_ _ _ b 9°F 9°F
Thus, in both the cases, stationary vortex-like structures sSN'm"Wp+| —| B+ WU A=0,
are described by the same system of Ex).with different W/, 0

types of the potentialF. This observation allows us to per-

form further analytical calculations in a rather general form,where the index 0 stands for the values calculatedJ at
and, therefore, most of them are universal and can be applied Uy andW=W,. Solutions of the linear Eq13) for A and

to other models. B can be easily found analytically; they define the asymptot-
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ics of the vortex solitons for different values of the vortex Equation(14) is a standard eigenvalue problem of the
chargemin terms of the background amplitudels, andW, linear waveguide theory, and it can be studied analytically,
defined by Eqs(11). e.g., by means of variational methotsee, e.g., Ref[18]
The analysis of the asymptotics gives us important infor-and references therginTo make some analytical estimates,
mation about the vortex structure. If both the produstd,  we presen(r) in an approximate form and obtain
and BW, are positive[see Eq.(12)], the vortex has a stan-
dard profile with the intensity in the core growing monotoni- 22U 1dU  m? C2
cally and always lower than the background intensity. How- i —~ U
ever, if one of these products is negative, somewhere across dr2 rdr 2 (D?+r?)
the vortex the intensity becomes higher than the asymptotic
background intensity. That implies that the vortex core isW
surrounded by a bright ring of higher intensity. We call such
structures “halo-vortices.” In both the cases mentioned
above, such vortex solitons may exist on a modulationall
stable background, and some examples are given below
Secs. IV and V.

hereE,C, andD are, in general, functions af andy. The
parameters are chosen to provide the best approximation of
the effective potentiaG(r). Using the standard variational
Ymethod (or Ritz optimization approaghand looking for a
Wturcation of a linear mode taken in a trial fornfi(r)

=r exp(—«r), we obtain an implicit expression to determine

) ) the mode cutoffa,
C. Vortex soliton as a waveguide

The concept of light guiding lightsee e.g., Ref.16] and E=(2C%—1-2m?)3/(36C*D?),
references therejnis based on a simple observation that a
spatial optical solitor{e.g., vorteX creates an effective opti- ) ]
cal waveguide in a nonlinear medium that can guide a wav&/hich we analyze below for some particular cases.
of different frequency or polarization. It is clear that a vortex
soliton creates a waveguide of radial symmetry, which can D. Modulational instability

guide a fundamental modao nodeg of the other wave. For . . ) .
the case of two incoherently coupled NLS equations describ- Stability of the stationary vortex solitons described by the
sSystem(5) is an important issue. In general, the stability

ing two orthogonal polarizations, the guiding properties o X . ) ) . .
vortex solitons have been analyzed by Haelterman and Shep@lysis of vortices in nonlinear models is a complicated
pard [15]. The first demonstration of an optically written @nd. generally speaking, unsolved problem. Instability can

waveguide based on an optical vortex has been recently ré€velop due to the presence of unstable eigenmodes local-
ported by Truscotet al. [17]. However, the theory devel- ized near the vortex core and, in the one-dimensional case,

oped in Ref.[15] is not valid for the case of the resonant this type of instability ofdark solitonsleads to the soliton

interactions and parametrically coupled waves. Indeed, th@'0tion, i.e., it isa drift instability (see, e.g., Refl5] and

parametric interaction forces the harmonic field to vanish for€ferences therein Since moving vortices with nonzero
r—0, trapping a singularityof the order ofNm. Therefore, ~MNIMuUM |n'tenS|ty.(S|r'n|Iar to grey solitons d_o not exist,
a parametric vortexannot guide a fundamental modgo similar drift instability is not observed for vortices. The main

analyze the guiding properties of parametric vortex So"tonsi,nstability that is usually associated with a vortex soliton

we note that Eqs(11) with the potentialF defined by Egs. originates from the instability of the nonlocalized back-
(6) and (10) have the solution Y ,=0Wy#0). Therefore, ground field. . . . .
we consider a vortex soliton created by a harmonic fisld The analysis of modulational instability of the back-

with a stationary profile described by the nonlinear equationdround field can be carried out in a general form. First, we
write Egs.(2) and(9) in the form

dw , Ldw N2m2+ W—yW3=0 du aF
dr2 r dr r2 s yET i—+sV2u+——=0,
dz au*
wherey= —4sy, for the model2), andy=9, for the model (15
(9). This equation always has a solution in the form of a dw OF
vortex soliton with the charg&m provided y>0 and s« ioc— +sV2w+——=0,
<0. Now, an eigenvalue equation for a linear mode guided dz aw*
by the vortexW(r) follows from the first equation of the
system(5). AssumingU <max(W), we obtain, with F defined as
d2U+1dU m2+ G(r)|U=0 (14 1
—+ = ———|—+s—sG(r =0,
drz rdr |2 j’-'ﬂ]-]:—|u|2+§(uzw*Jru*zw)—alw|2
where 1
+x| 5lul*+ 20w+ plwlul?, (16
d?F
G(r)= _d 5
U u=o for the model of competing nonlinearities, or
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10 0.0~
(@) _ ()
b x
% 0 10 %15 0 10
o o
FIG. 1. Existence domains for the modulationally stable back- -2 X r
ground modes of the systef®) for (a) s=—1 andxy>0; (b) s
=+1 andx<O0. FIG. 2. An example of a two-component vortex soliton sup-
ported by competing nonlinearitya=—2.5, y=—-0.1, ands
s =+1). In (a) only the vortex of the fundamental harmonic field is
.7'—%.7:2=—|u|2+§(U3W*+u*3W)—a|W|2 shown.
1 9 the analysis of modulational instability for each of the three
+s| —=|ul*+ = |w|*+ 2|w|?|u|?], 1 thaly ) yi
18| | 2| | [wilul (7 solutions as= =1, we find that there exists onne modu-

) ] ] lationally stablemode. The parameter domains where such a
for the model of the third-harmonic generation. We look for 5o ution exists are presented in Figé)land 1b). Note, that
stability of the background wave solutiot) §,W,;) defined sign(sy) =signy® and thus modulationally stable solutions
by E_q. (11), a_nd_linearize Eq(15) around this stationary exist only for y®<0. Importantly, the amplitude of the
solution substituting modulationally stable background diverge in the linit
—0 so that the stable background solution exists exclusively
due tomutual action of quadratic and cubic nonlinearities
Other nonlinear modes are modulationally unstable in the
whole domain of their existence and they are not presented

As a result, we obtain a system of linear equations fon Figs. 1@ and Xb). Modulational stability in the limit of

u:U0+aei|2-F+iwz+be—ilE-F—iwz'
— o (18)
W=W0+Ce'k'r+'wz+de_'k'r_'wz.

a,b*,c, andd* leading to the characteristic equation large negativee® [e.g., fors= — 1 andx>0, see Fig. (a)],
is not surprising because stable dark solitons are known to
Ape y—=Q  Apx s Ay w Agx wr exist in a defocusing Kerr medium without quadratic nonlin-
Ay Ay +Q Ay Ay e earity. Here, we are int_erested in the case when the effective
' ' ' ' =0. nonlinearity is predominantly quadratic, i.éxU | ~|xWo|
Aws u A e A= A <1. We found that this condition can only be satisfied for
Ay Ay u Ay w Ay +Q s=+1 where modulationally stable background waves of

. _ moderate amplitudes exist for relatively small values of
Here the nondiagonal elements are given By, . negativey [see Fig. 1b)].
=(9°Flon gm)|y-y,w-w, Where nm=u,u*,w,w*, Using the numerical relaxation technique, we have found
and in the diagonal matrix elementsA, .« that a continuous family of two-component vortex solitons
=(9%Flon ‘9“*)|u:uo,w:wo—ﬁ42- Solving the characteristic exists in the whole region of the existence of modulationally

equation with respect t6), we conclude the modulational Stable background waves shown in Fig&, . Figures 2a)
instability analysis: purely rea) solutions for all positive 2and 2b) present an example of such a vortex soliton.

|k|? (with other parameters fix@dndicate a modulationally al'g?\? (l)r/tsl ::sesoéa;hg)(i\é?ir:]eéq%sgmpti?gf_dlegr(]); st>r%teisn that
stable background for this fixed set of the parameters. Below£ yis= X"

we present the results of the modulational instability analysi hef;;r(;?;/virskt)r:ga;r; Snﬁofc,(\;?icmes%nzi Q?%ttgﬁ:?bsuﬁ??ﬁe
for two cases of the parametric two-wave interaction. 2= ymp P

formation of the haldi.e., bothBW, andB,W, products are
negative.
IV. COMPETING NONLINEARITIES

Analysis of modulational instability for the syste®) has Halo-vortices
been briefly presented in Refl1l]. Below we repeat the 10 ' ' ;
main steps of that analysis for the completeness of this paper. -
Solutions of Eq.(2) for background waves can be found by o wave
solving the coupled algebraic equations: ] vortex solitons

12 W3+ 12W3+Wo(a—8+2x 1) =2x"1, a

0
Ua=4(1—Wp)x *—8W3, -10 0 10

for real Uy, and W,. There exist up tdhree such solutions FIG. 3. Region of the existence of halo-vortices in the model of
with both amplitudedJ , andW, being nonzero. Performing competing nonlinearities=—1.
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10

Modulationally?
stable plane
wayes

Ring-vorte:
solitons

0 h
0 o 10

FIG. 6. Region of existence for ring-vortex solitonssat — 1
and y>0. Left curve, (2= a)=aly, is defined by a bifurcation
where a bright component appears. Middle curve is a critical thresh-
old that divides modulationally stable and unstable solutions. Right-
Ring-vortex solitongan also exist in the modéR), see  hand side curve is the boundary for the existence of two-component
FIgS 43) and 4b) and FIgS 5&) and 3b) Variational analy— parametric plane waves.
sis allows us to find an approximate expression for the bifur-
cation curve where such solutions appear;-@=+a/y.  charged vortices. Due to phase matching with the second
As « increases, the maximum of the bright-ring amplitudeharmonic, we observe a generation of double-charge vortices
approaches the valug, of two-wave modulationally stable in the harmonic fieldsee the plots at=1) and then peri-
parametric plane waves. At the values rofvhere U ap-  odic oscillations of the two-component background and the
proachedJ,, the second componey, also approaches the vortex profiles near a stationary state corresponding to a lat-
corresponding plane wave amplitué, [see Fig. 4b)]. tice of two-component vortex solitonsee the plots at
Such ring-vortex solitons can be unstable due to modula=10 as an example of such dynamics
tional instability of the background waveJ,=0W3
= aldy. For example, fos= —1,&>0, modulational stabil-
ity is defined by the conditiond—2)> \/a/y. The regions
of the existence of modulationally stable one-component Vortex solitons of Eq(9) have fewer parameters in com-
plane waves and ring-vortex solitons of ER) are presented parison with the parametric vortices described by B,
in Fig. 6. and thus they can be analyzed much more easily numeri-
Existence of two-component stable vortex solitons com-<ally. These vortex solitons are found in the whole region of
posed of parametrically coupled fields suggests that sucte existence of modulationally stable plane waves, i.e., for
vortices can be excited in the process of the harmonic genx<ay,~14.509. Examples of such vortex solitons are
eration. In Fig. 7, we present the numerical simulation resultshown in Figs. 8) and &b).
supporting this idea. We launch a mode of the fundamental A third-harmonic component of the vortex solitons has a
frequency without a seeded second harmonic assuming th@nmonotonic tail for 10.88 «<14.509, however it can
condition of phase-matching. The vortex soliton dynamics isonly be called a halo vortex for the interval 1126
simulated using a split-step beam propagation methoa<14.509, where the absolute value of a local extremum in
(BPM). To solve the problem of the vortex phase geometrythe structure of the vortex tail is greater than the correspond-
we simulate a system of four vortices, arranged such thang plane wave background valWé,. The halo is becoming
horizontally and vertically adjacent vortices are opposite inmore pronounced asg—14.509. An example of a halo-
charge. Lines of equal phase are chosen to correspond to thertex soliton of Eq.(9) is shown in Fig. 9.
lines of the force of an equivalent system of electrostatic Ring-vortex solitons have also been found for the model
point charges. With the periodic boundary conditions im-(9), see Fig. 10. In this case, a variational analysis allows us
posed by BPM, this configuration means that, in fact, arto find an approximate analytical result for the bifurcation
infinite array of vortices is simulated. Figure 7 shows the
vortex generation by an input fundamental mode with single- 10 8

FIG. 4. Examples of a ring-vortex solitors€ —1, y=1) for
(@) @=1.4 and(b) «=3. Solid, FH wave; dashed, SH wave.

V. THIRD-HARMONIC GENERATION

15¢

(o)
20

r

FIG. 5. (&) Intensity profile of the first harmonic, and) the FIG. 7. Generation of two-component parametric vortex solitons
amplitude profile of a ring-vortex solitone(=1.7, y=1, ands by the fundamental vortices. Profiles of the fundameftgiper
=—1) for the fundamentalsolid) and second-harmoni@ashed row) and second-harmonidower row) fields are shown ar=1
modes. (left column andz= 10 (right column.
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4t 3 1
(b) u A u B
1 W
2 w2
= =
0
T 10 20 % 10 20
r r
4

A
FIG. 8. Examples of two-component vortex solitons supported 2r B )
by the third-harmonic generation at&—1: (a) «=9, and(b) «
=13. 8
: 0
point (s= — 1) where a ring-like mode is guided by the vor- D
tex 2l 1
(v/p) C
apit= 3 -
2 -4 L ! | !
{1— § 1—W722(1+2m2) ] -9 -8 -7 as'e -5 -4
m
P 2 w C 10 w D
For y=9,0=2,N=3, and m=1 this gives ap;~4.52, 20 z
which agrees well with numerical data. We also find that, in =) u =)
general, coupled ring-vortex solitons exist fer-4.5, and 00 u
for each such value oft (excepta= ay) there existtwo -3} Js 05 o
different types of ring-vortex solitonisee Fig. 10 As the r r

parameter decreases, the maximum of the bright ring in the

fundamental mode approaches the valudJgfof the two- plot as the maximum of the bright-ring amplitudg,, vs as. Filled

wave modulationally stable background f'eld' Agam, a_s, ItcirclesA, B andC, D correspond to the vortex profiles shown above
has been observed for the model of competing nonlinearities,, 4 pelow respectively.

at values of whereU approache$), the vortex component
W deforms significantly approaching the correspondin
plane-wave amplitudé/,. We note thaall these ring-vortex
solitons are modulationally stahlebecause, in the frame-
work of Eg. (9), modulational instability does not occur for
one-component plane wave solutions.

FIG. 10. A family of ring-vortex solitons shown in the middle

g\Nave background. In the second case, we have considered
how the vortex parameters, structure, and stability are modi-
fied due to the process of third-harmonic generation when
the phase-matched wave interaction generates a correspond-
ing multicharge vortex component in a harmonic field. In
particular, we have predicted the so-called “halo-vortex”
consisting of a two-wave vortex core surrounded by a bright
We have analyzed two-component vortex solitons supfing on a nonvanishing background. Additionally, we have
ported by parametric wave mixing in a nonlinear optical me-analyzed the waveguiding properties of a vortex soliton in
dium. We have considered two classes of such vortex solithe case when it guides a harmonic field due to a phase-
tons. In the first case, we have studied the existencghatched parametric interaction. A rigorous analysis of the
structure, and stability of vortex solitons supported by phasestability of these parametric vortex solitons is still an open
matched interaction between the fundamental and secongroblem, as well as the effect of walk-off on the vortex ex-
harmonic waves in a quadratic medium, and the effect of théstence and stability.
next-order cubic nonlinearity has been taken into account for As for experimental verifications of the vortex solitons
suppressing modulational instability of the supporting planedescribed above, we would like to mention that, at least in
the low-intensity regime, parametric vortices have already
15 been observed in nonlinear optics. A possibility of SHG by a
o beam with a vortex was first mentioned and experimentally
verified in Ref.[6], where a vortex of the topological charge
m=2 was found in the second-harmonic wave when the fun-

VI. CONCLUDING REMARKS

lul

~0F 251 i damental wave contained a vortex of the topological charge
5 m=1. The similar results on SHG have been presented by
] ] Dholakia et al. in Ref. [7], whereas more complicated pro-
. cesses of sum-frequency mixing with beams carrying phase
e e Y SO s - singularities were reported by Bewzskiset al. [8,9]. It is
-15 . LI 10 20 worth noticing that in all of those observations the different

harmonics experienced noticeable walk-off that makes the
FIG. 9. Example of a halo-vortex soliton as a stationary solutionstationary structures difficult to observe, also introducing
of Eq. (9) for s=—1 anda=13. novel features in the vortex dynamics. In particular, for a
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collinear type | phase-matched SHG with an input beam careondensates as well, providing a much broader view of the
rying a single-charge vortex, Matijins et al.[19] observed phenomenology of parametric vortex solitons.
two intensity zeroes in the second-harmonic field with the At last, we expect that the concept of the two-component
separation of two SHG vortices due to walk-off. Thus, weparametric vortices, generated and supported by the third-
can expect that stationary two-component vortex solitondiarmonic generation process, can be important in the so-
discussed above can be observed in typical upconversion egalledthird-harmonic microscopysee, e.g., Ref22]) where
periments when a high-intensity beam undergoes frequenan image is rendered using a series of cross-sectional images
doubling simultaneously with the creation of a phase singuproduced by third-harmonic generation within the specimen.
larity produced by a phase mask at the input, similar to thé/ortices can then be formed due to the development of caus-
experiments mentioned above which were performed atics[2] in the reflected harmonic field, indicating the regions
moderate powersStability of those vortex solitons requires of highly concentrated inhomogeneities. This technique is
small (or zerg walk-off and a small defocusing Kerr nonlin- based on the fact that the nonlinear susceptibility of solid
earity of an optical material at boflor at least fundamental media vary over many orders of magnitude, compared with
wave frequencies. linear refractive index changes that vary in a relatively small
Additionally, we would like to mention that the para- range.
metrically coupled equations of competing nonlinearities,
similar to Eq.(2) analyzed above, have been recently intro-
duced by Heinzeret al. [20] to describe the dynamics of ACKNOWLEDGMENTS
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